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Abstract

A number of methods have been established to estimate the proportion true null hypotheses in multiple testing

under the assumption of independency. On other hand, the test statistics are either discrete or continuous. In this
paper, we will review an existing likelihood approach for estimating the proportion of true nulls Ty in

controlling the false discovery rates when the test statistics are continuous (see Hualing and Hanfeng, 2021). We
therefore present an extension of these method that can successfully make some improvement of the
performance. Simulation study demonstrates that the new estimator performs very well.
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1. Introduction

Multiple hypotheses tests have played an important role for large scale big data. Multiplicity
occurs when more tests are made simultaneously, the more test done, the more errors occur.
There are several statistical technique have been developed to prevent this erroneous from
happening. On other hand, the population distribution of the observed p-values py, ..., P can be
described as a finite mixture with mixing proportion m, of the uniform distribution on (0,1} and
another non-uniform distribution with the pdf, say 2(x)
fp/my.hy = my + (1— my)h(p), O0=p<1.

The mixture model approach has been widely adopted and several other estimates have been proposed
(see Langaas, Lindgvist and Ferkingstad, 2005; Wu, Guan and Zhao, 2006; Jiang and Doerge, 2008;
Zhao et al., 2012; Cheng, Gao and Tong, 2015; Tong et al., 2013 and Oluyemi and Hanfeng, 2016).
Nevertheless, when these estimates aim to improve some aspects of the Storey's estimator, the
biasedness remains significant even with m as large as 2000, especially when mg is not close to 1 (see

Storey, 2002). Motivated by the histogram approach (see Mosig et al., 2001 and Nettleton et al., 2006)

a new estimator is proposed via a likelihood approach with h being approximated by a modified
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histogram pdf, where Akaike information criterion is used to determine the number of categories in

histogram construction (see Hualing and Hanfeng, 2021). In this paper, we present an extension
of this method that can successfully make some improvement of the performance. By using the
Shimazaki and Shinomoto method to select the number of categories in histogram construction (see
Shimazaki and Shinomoto, 2007). Simulation study demonstrates that the new estimator

performs very well.
2. Methods

2.1  Existing Likelihood Estimating Method (see Hualing and Hanfeng, 2021)
Let py, P2, ... P, e arandom sample of size m from the pdf

fp/my.hy = my + (1— my)h(p), O0=p<1.

The method proposes m; to be estimated by the Maximum Likelihood Estimating (MLE)
when k is subject to a histogram type approximation. Motivated by the histogram approach

(see Mosig et al., 2001 and Nettleton et al., 2006), a histogram approximation to the alternative

pdf h(p) is proposed as follows. Let k = 2 be an integer. Define

) kq; if (—V/k<p<j/k 1<j<k-1
h(p)={

kg (1=p) if (k -—1)}/k=p=1
where 0 = g; = 1withg, +q, + "+ g, + g, /2=1.q;, = Li=1y where k pre-specified

using Akaike information criterion (AIC) method (see Akaike, 1974). The AIC selection of

k is to choose estimate to k such that 21, — 2(k — 1) is maximized, i.e.,
k = argmax{2l, — 2(k— 1)}

So, the final estimate for my is (k).
Then, the finite mixture distribution can be expressed as:
fp/my-h) = my + (1— HD){“?H(I“F;)”G} {k:qk—l(l — p;) e

where w,; is the indicator whether p; falls into j-th category of the histogram with k bins or not,

ie.,
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W, = {1 if G—1)/k =p, <j/k
U 0 otherwise
for=12,..,m,j=12,.. k Notethatfor 1 =i =m, Z¥  w;=1and T, T*. ) w ;= m.
The log-likelihood of the parameter m, of interest and the new nuisance parameter q becomes

=

myq) = Z?illog{nﬁ +(1—m,) n[kq}.)wq {k’q,_,(1—p )}

i iy
So, maximizing the nonlinear log-likelihood function can be complicating. However, the
Expectation-Maximization algorithm (EM algorithm) can be used to obtain an approximation to

the MLE, #,(k), easily. To do that, they introduce a latent Bernoulli variable z; be a binary
random variable with z; =1 if p belongs to the first mixture component U (0, 1) if and only if
the null hypothesis is true, and =z, =0 if p belong to the second mixture component
h(gl,...,qk), for i =1,...,m when the exact number of observations within each mixture

component is fixed, Then the complete data likelihood function of (. q) is:

™
1_[ f[Pi |“D]H[f[Pi |"Tu:'f]’1-- L ]1_5[
izl

B ﬁ WDZE {[1 - WD] ﬁtkq}']uﬁ U{:f]’k—i(l - P:‘]}mm }1_3[

and the log likelihood function for complete data is:
Mimpg) =z logmg+ (m —z)logl(l —my) + Ej-‘;ff:w i og(kq ) + B2 wg"loglk gy (1 — p7)]
— — m o’

where Cr_-'l:-'}- = [:1 —Zi:]mi-_;,- Z = 25:1 z;,and ;= E:ﬂzl mi-z'_;u'

Using the current iterate of parameters 8° = nj,g},..., gy at iteration, the next approximation

(871 = mi*t qi™t, .., qf™) is given by the EM algorithm in two steps:

E-Step: conditional expectation of z; given p

Qo q) = E(1"(mp,q) |p; 87)

k-1

=Egt(z|P)logm, + [m — Egt [:zllP]) log(1— my) +Z[ng (e’ |P)) log kq;
=1
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M-step: In the M-step, @(m, q) is maximized to yield the next approximation

t+1 e+l e+l t+1
g = my g1 s Qg

Setting d@ /dm, = 0, we have

oy Egt(z|P)
To T

where

™
Ege(z|P) = Z Byt ot GilP) = B o (2IP) = byt 0e(z, = 11P) = 5
i=1

t
To

mh+(1- ngjin;f:‘__'—.;kqu;.“ii} 2 gy, [ (1-p )ik

and second to approximate q;, by dE (z,|p; H*)quj = 0 we have

tHl i w.i

9 m — EREqu(zllF] B m(1— 5t
Fl

To sum up, let =5 qi.....q5 be the t*™approximations to the maximum likelihood, and the

75t gt ..., gt is approximation with EM algorithm is given by
T Hé“
eer s+ (AT (kg )] (k2 a (1 P}
L o
I

£+l E:};l[:l _z':)mij

q.
] 1]

t+1 _ 2270 (1 — ) (@ye—1) + @i0))

] 3
f}'kHl — qk_1r+1!,.'2
where
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i=1i=1 i=1
repeat until

Q8" ) —Q(89)<€& t=012,..

2.2 Shimazaki and Shinomoto Method

Shimazaki S and Shinomoto H, 2007 proposed a method (SH) to estimate how the optimal
size of bins decreases when more experimental trials are added to the data. The method
provides the cost function for number of sequences. However, we have applied this method
and compared it with Surge’s role and Freedman method for right skewed exponential
distribution, left skewed beta distribution and normal distributions as shown in Figures 1, 2
and 3. By using R language to simulate data with a sample size of 10000. The Figures
explained how the performance of SH method compared with the other two methods and how

it was very well.

-----

I!i”.l TN
SH method Sturge’s method Freedman method
Figure 1: Displaying the performance of three methods for right skewed exponential

distribution .
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SH method Sturge’s method Freedman method

Figure 2: Displaying the performance three methods for left skewed beta distribution
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SH method Sturge’s method Freedman method

Figure 3: Displaying the performance of the three methods in normal distribution
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The Algorithm of Shimazaki and Shinomoto method (Shimazaki and Shinomoto, 2007)

1.

2.3

First, we should start with determine the sample size of the Histogram distribution

which is . we used R language to cluster the variables.
Divide the data range into B bins width X, and count the number of events L, that enter

to the i-th bin.

Calculate the mean and the variance of the number of events L as:

L=YXE5 Li
and
E e
V=1/B Y _ (Li—=L)®

Compute a formula (cost function)

c) = (ELF; L’)

Repeat until change % , then find A* that minimize C (%)

Adjusted likelihood Method

We have applied the SH method in the likelihood approach. Therefore, the EM iteration

process geos as shown below: inputs w

gpi=1,...,M,j=1,..k transformed from the

observed p-value, where k was the estimated using SH method. The output is the estimate of

g = (Hl}!qi"'qkj
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e begin

PR ; (o) (o
o initialization:set my=m, 4= q;
e repeat

3

(t (£} , ,
o set:m, =mW, ,.= . thecurrent approximeation
] o j] j

o (Caompute

4
m HI}

g+ (1 - w){ITS (ke )@ kg (1 — p))es

m

t+l
ED -

£+l E:J;l(l _Zr:jmij

1T

q_;l'

t+1 EZ;":l(l _zﬂ;) (mil:k—l]l + Ct’g.:k;.)

Q-1 37

cjl.;'{!'+1 — qk—1r+1f2

m

=m— E z,

i=1

o Until |Q(8" ) — @) <& t=012,..

= r+l
then iy = m;

3 Simulation study
To investigate the properties and performance of these methods, a simulation study was
performed taking three different values of sample size m, with variety of replicate of each

case (Independent, weak dependent, moderate dependent and strong dependent cases), with
different true values my. The generation were drawn from multivariate normal distribution

where [ is the mean vector of the sample and X is the covariance matrix. The generation of
simulated data, calculation of the estimators, the calculation of the estimated average and the
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empirical standard deviation were all done in R language version 3.6.2 and the online source

package cp4p.

3.1 Independent case

In this case, we used randomly generated independent data with no dependence structure

within or between the genes from mixture normal distribution. Each p-values were computed

by the cumulative distribution function of standard normal, with true values of m, = 0.25,

0.50, 0.75 and 0.90. The leading diagonal of covariance matrix X contained all 1’s. This

procedure was replicated 100 times, for sample sizes (200, 500 and 1500 genes). The result of

these two methods performances is shown in table 1 below.

Table 1: Empirical average of the estimates for the proportion 7, with their standard deviations in
Parentheses in independent data. Each of the entries is based on 100 replicates. Denote
i, for the existing likelihood method estimator and ."f[‘,’dJ for the new Adjusted likelihood

estimator.
m Tn ﬁl} ﬁgd-i
200 0.25 0.283 0.294
(0.2954) (0.1213)
0.50 0.568 0.572
(0.2031) (0.1493)
0.75 0.801 0.808
(0.0781) (0.1552)
0.90 0.928 0.936
(0.0883) (0.1526)
500 0.25 0.314 0.371
(0.2734) (0.1321)
0.50 0.556 0.562
(0.1892) (0.1449)
0.75 0.775 0.783
(0.0721) (0.1499)
0.90 0.915 0.918
(0.0775) (0.1479)
1500 0.25 0.307 0.333
(0.2486) (0.1330)
0.50 0.553 0.549
(0.1700) (0.1334)
0.75 0.781 0.796
(0.0700) (0.1352)
0.90 0.913 0.917
(0.0721) (0.1315)
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3.2 Weak dependent
In this case, each p-values were computed by the cumulative distribution function of standard
normal, with true values of m; = 0.15, 0.55 and 0.95. The leading diagonal of covariance

matrix ¥ contained all 1’s and the p’s in the ¥ matrix were all 0.15. This procedure was

replicated 30 times, for sample sizes (200, 500 and 1500 genes). The result of these two
methods performances is shown in table 2 below.
Table 2: Empirical average of the estimates for the proportion 7 with their standard deviations in

Parentheses in weak dependent data. Each of the entries is based on 30 replicates. Denote
i, for the existing likelihood method estimator and ."f[‘,’dJ for the new Adjusted likelihood

estimator.
m Ty gy ,-I:I;-'d.i'
200 0.15 0.310 0.362
(0.1790) (0.2219)
0.55 0.693 0.711
(0.1725) (0.2191)
0.95 0.975 0.982
(0.1685) (0.1731)
500 0.15 0.307 0.332
(0.1541) (0.2016)
0.55 0.686 0.691
(0.1665) (0.1823)
0.95 0.944 0.931
(0.1433) (0.1574)
1500 0.15 0.262 0.308
(0.1288) (0.1978)
0.55 0.661 0.672
(0.1249) (0.1580)
0.95 0.957 0.959
(0.0) (0.1219)

3.3 Moderate dependent
In this case, each p-values were computed by the cumulative distribution function of standard
normal, with true values of © 0= 0.20, 0.60 and 0.80. The leading diagonal of covariance

matrix X contained all 1’s and the g’s in the £ matrix were all 0.55. This procedure was

replicated 15 times, for sample sizes (200, 500 and 1500 genes). The result of these two

methods performances is shown in table 3 below.
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Table 3: Empirical average of the estimates for the proportion m, with their standard deviations in
Parentheses in moderate independent data. Each of the entrles is based on 15 replicates. Denote
7, for the existing likelihood method estimator and 7, %I for the new Adjusted likelihood

estimator.
m Ty iy 7 ng
200 0.20 0.378 0.396
(0.1561) (0.1972)
0.60 0.665 0.676
(0.1137) (0.2025)
0.80 0.932 0.931
(0.1645) (0.2213)
500 0.20 0.290 0.301
(0.1298) (0.1648)
0.60 0.640 0.647
(0.0947) (0.1954)
0.80 0.915 0.912
(0.1211) (0.1934)
1500 0.20 0.254 0.271
(0.0874) (0.1364)
0.60 0.612 0.619
(0.0547) (0.1454)
0.80 0.867 0.862
(0.0737) (0.1348)

3.4  Strong dependent
In this case, each p-values were computed by the cumulative distribution function of standard
normal, with true values of ® 0= 0.30, 0.50 and 0.70. The leading diagonal of covariance

matrix X contained all 1’s and the g’s in the ¥ matrix were all 0.90. This procedure was

replicated 25 times, for sample sizes (750 and 1300 genes). The result of these two methods
performances is shown in table 4 below.

Table 4: Empirical average of the estimates for the proportion 75 with their standard deviations in
Parentheses in strong dependent data. Each of the entries is based on 25 replicates. Denote
Ty for the existing likelihood method estimator and rr[‘:dJ for the new Adjusted likelihood

estimator.
M Ty gy ,gd-'
750 0.30 0.401 0.469
(0.1464) (0.2363)
0.50 0.614 0.583
(0.1378) (0.2036)
0.70 0.771 0.790
(0.1429) (0.1973)
1300 0.30 0.347 0.384
(0.0822) (0.1093)
0.50 0.582 0.557
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(0.0887) (0.1632)
0.70 0.721 0.739
(0.0911) (0.1389)

4 Conclusion

For all simulated types of data, it is clearly shown that the new adjusted likelihood estimate

outperformed substantially over the existing method with comparable standard errors. We

also observed that, the estimators approached the true values of m; as the sample size

increased. In general, the higher of true values of m, the estimators more effective (see

tables 1, 2, 3 and 4).
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