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Abstract 

 In the ever-evolving of software development, the surge in artificial intelligence (AI) and deep 
learning technologies has been nothing short of astonishing. As the world bears witness to this 
transformative era, staying abreast of cutting-edge problem-solving methodologies becomes 
paramount. To master these techniques, practical experimentation is essential. Among these 
techniques, the genetic algorithm stands as a venerable tool for addressing complex problems. Its 
longevity in the field attests to its efficacy. 

Genetic algorithms find their niche in scenarios that demand iterative sorting under diverse and 
multifaceted conditions. Whether optimizing schedules, streamlining resource allocation, or 
enhancing decision-making processes, these algorithms offer a powerful framework. Their 
versatility extends across various domains, making them excellent tools for modern problem 
solvers. 

 The study of genetic algorithms involves practical validation. By subjecting them to rigorous 
testing and empirical study, to uncover their limits, capabilities, and potential applications. As 
delve deeper into this field, novel solutions will be unlocked and pave the way for further 
advancements. 

The primary focus of this research paper is to demonstrate genetic algorithm principles, 
specifically in the context of optimizing timetable schedules through the use of Evolutionary 
Algorithms (EAs). The study proceeds by presenting a developed (.NET) application that 
employs the prescribed methodology of numerous genetic algorithms to seek the most optimal 
solution for scheduling college classes, subject to multiple constraints. Subsequently, a 
comparative analysis of the results obtained from two selected algorithms is conducted. 
 

Keywords : Evolutionary Algorithm, Genetic Algorithms, Timetable Schedules ,Scheduling Model. 

 

1. Introduction  
 In the recent years, metaheuristic algorithms are used to solve real-life complex 
problems arising from different fields such as economics, engineering, politics, 
management, and engineering. Intensification and diversification are the key elements of 
metaheuristic algorithm. The proper balance between these elements is required to solve 
the real-life problem in an effective manner. Most of metaheuristic algorithms are 
inspired from biological evolution process, swarm behavior, and physics’ law. As is 
known from experience, the manually designing and preparation of time schedules that 
are best suited to the purposes for which they were prepared is a difficult process that 
takes a huge amount of time and energy. Worse still, the process has to be recalculated 
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for each input individually each time the parameters change. 
Fortunately, artificial intelligence (AI) can streamline this process, automating the heavy 
lifting and providing efficient solutions, and Genetic Algorithm is one of the most 
commonly used method in the meantime.  
The Genetic Algorithm (GA) is a search-based optimization technique rooted in 
principles inspired by genetics and natural selection. GAs are commonly used to 
discover optimal or nearly optimal solutions for challenging problems that would 
otherwise require an extensive amount of time to solve manually. Their applications span 
various domains, including optimization problems, scientific research, and machine 
learning[1]. 
The objectives of this paper are: 

• Demonstrate genetic algorithm principles. 

• Design and develop an app to use multiple genetic algorithm approaches to 
schedule classes of an education institution with different constrains. 

• Implement the web app and compare the results between two chosen methods. 
 

2. Genetic Algorithms 

In computer science and operations research, a genetic algorithm (GA) is a metaheuristic 
inspired by the process of natural selection that belongs to the larger class of evolutionary 
algorithms (EA). 

A genetic algorithm is a search heuristic that is inspired by Charles Darwin’s theory of 
natural evolution. This algorithm reflects the process of natural selection where the fittest 
individuals are selected for reproduction in order to produce offspring of the next 
generation. 

The (GA) is a method for solving both constrained and unconstrained optimization 
problems that is based on natural selection, the process that drives biological evolution. 
The method repeatedly modifies a population of individual solutions[2]. 

2.1 Notion of Natural Selection 
The process of natural selection starts with the selection of the fittest individuals from a 
population. They produce offspring which inherit the characteristics of the parents and 
will be added to the next generation. If parents have better fitness, their offspring will be 
better than parents and have a better chance at surviving. This process keeps on iterating 
and at the end, a generation with the fittest individuals will be found. 
This notion can be applied for a search problem. A set of solutions for problem is 
considered and selected the set of best ones out of them[1].  

2.2 Phases of Genetic Algorithm 
There are six phases considered in a genetic algorithm: 
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• Initial population 

• Fitness function 

• Selection 

• Crossover 

• Mutation 

• Termination 

2.2.1 Initial Population 

The process is initiated with a set of individuals which is called a Population. Each 
individual is a solution to the problem needs to be solved, those individuals may or may 
not include the optimal values. 

An individual is characterized by a set of parameters (variables) known as Genes. Genes 
are joined into a string to form a Chromosome (solution). 

In genetic algorithm, the set of genes of an individual is represented using a string, in 
terms of an alphabet. Usually, binary values are used (string of 1s and 0s). This process is 
referred to as encoding the genes in a chromosome. Figure (1) shows an example of 
Population, Chromosomes and Genes.  

Figure (1) Population, Chromosomes and Genes. 

The population size depends on the nature of the problem, but typically contains several 

hundreds or thousands of possible solutions. Often, the initial population is generated 

randomly, allowing the entire range of possible solutions (the search space). 

Occasionally, the solutions may be "seeded" in areas where optimal solutions are likely to 

be found[2]. 

2.2.2 Fitness Function 
Fitness Function (also known as the Evaluation Function) evaluates how close a given 

solution is to the optimum solution of the desired problem. It determines the ability of an 

individual to compete with other individuals. It gives a fitness score to each individual. 
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The probability that an individual will be selected for reproduction is 

based on its fitness score. 

There are generic requirements should be satisfied by any fitness function: 

• Clearly defined.  
• Efficiently implemented. 
• Quantitatively measured . 

• Generate intuitive results. 
Each problem has its own fitness function. However, certain functions have been adopted 

by data scientists regarding certain types of problems. Coming up with a fitness function 

is the hardest part when it comes to formulating a problem using genetic algorithms. 

Typically, for classification tasks where supervised learning is used, error measures such 

as Euclidean distance and Manhattan distance have been widely used as the fitness 

function. 

For optimization problems, basic functions such as sum of a set of calculated parameters 

related to the problem domain can be used as the fitness function. A very famous 

scenario where genetic algorithms can be used is the process of making timetables or 

timetable scheduling. 

Consider a weekly timetable being created for a particular batch of college classes. 

Classes must be arranged, and a timetable developed, to ensure no clashes occur. The 

task, therefore, is to search for the optimum timetable schedule. 

Since no collisions among classes should occur, minimizing the number of students with 

class conflicts is essential. The fitness function can be formulated as the inverse of the 

number of students with class conflicts. The fewer the students with class conflicts, the 

more fit the class schedule is[3]. 

2.2.3 Selection 

The idea of selection phase is to select the fittest individuals and let them pass their 

genes to the next generation. 
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Two pairs of individuals (parents) are selected based on their 

fitness scores, individuals with high fitness have more chance to be selected for 

reproduction. 

During each successive generation, a portion of the existing population is selected to 

reproduce for a new generation. Individual solutions are selected through a fitness-based 

process, where fitter solutions (as measured by a fitness function) are typically more 

likely to be selected. Certain selection methods rate the fitness of each solution and 

preferentially select the best solutions. Other methods rate only a random sample of the 

population, as the former process may be very time-consuming. 

The fitness function is defined over the genetic representation and measures the quality of 

the represented solution. The fitness function is always problem dependent. For instance, 

in the knapsack problem one wants to maximize the total value of objects that can be put 

in a knapsack of some fixed capacity. A representation of a solution might be an array of 

bits, where each bit represents a different object, and the value of the bit (0 or 1) 

represents whether or not the object is in the knapsack. Not every such representation is 

valid, as the size of objects may exceed the capacity of the knapsack. The fitness of the 

solution is the sum of values of all objects in the knapsack if the representation is valid, 

or 0 otherwise. 

In some problems, it is hard or even impossible to define the fitness expression; in these 

cases, a simulation may be used to determine the fitness function value of a phenotype 

(e.g., computational fluid dynamics is used to determine the air resistance of a vehicle 

whose shape is encoded as the phenotype), or even interactive genetic algorithms are 

used[4]. 

2.2.4 Crossover 
Also called recombination, is a genetic operator used to combine the genetic information 

of two parents to generate new offspring. It is one way to stochastically generate new 

solutions from an existing population and is analogous to the crossover that happens 

during sexual reproduction in biology. Solutions can also be generated by cloning an 
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existing solution, which is analogous to asexual reproduction. 

Newly generated solutions are typically mutated before being added to the population. 

Different algorithms in evolutionary computation may use different data structures to 

store genetic information, and each genetic representation can be recombined with 

different crossover operators. Typical data structures that can be recombined with 

crossover are bit arrays, vectors of real numbers, or trees. 

Crossover is the most significant phase in a genetic algorithm. For each pair of parents to 

be mated, a crossover point is chosen at random from within the genes. For example, 

consider the crossover point to be 3 as shown in Figure (2). 

Figure (2) Crossover point. 

Offspring are created by exchanging the genes of parents among themselves until the 

crossover point is reached. Figure (3) shows the process of exchanging genes among 

parents. 

Figure (3) Exchanging genes among parents. 
 

The new offspring are added to the population as seen in Figure (4). 
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Figure (4) New offspring. 

Traditional genetic algorithms store genetic information in a chromosome represented by 
a bit array. Crossover methods for bit arrays are popular and an illustrative example of 
genetic recombination. 

• One-point crossover 
A point on both parents' chromosomes is picked randomly and designated a 'crossover 

point'. Bits to the right of that point are swapped between the two parent chromosomes. 

This results in two offspring, each carrying some genetic information from both parents. 

See Figure (5) 

Figure (5) One Point Crossover. 

• Two-point and k-point crossover 
In two-point crossover, two crossover points are picked randomly from the parent 

chromosomes. The bits in between the two points are swapped between the parent’s 

organisms. 

Two-point crossover is equivalent to performing two single-point crossovers with 

different crossover points. This strategy can be generalized to k-point crossover for any 

positive integer k, picking k crossover points. See Figure (6). 

 
Figure (6) Two Points Crossover. 
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• Uniform crossover 
In uniform crossover, typically, each bit is chosen from either parent with equal 

probability.[6] Other mixing ratios are sometimes used, resulting in offspring which 

inherit more genetic information from one parent than the other. In a uniform crossover, 

we don’t divide the chromosome into segments, rather we treat each gene separately. In 

this, we essentially flip a coin for each chromosome to decide whether or not it’ll be 

included in the off-spring. It’s also possible to bias the coin to one parent, to have more 

genetic material in the child from that parent[5]. 

2.2.5 Mutation 
In certain new offspring formed, some of their genes can be subjected to a 

mutation with a low random probability. This implies that some of the bits in the bit 

string can be flipped. See Figure (7). 

Figure (7) Mutation: Before and After. 

 

Mutation occurs to maintain diversity within the population and prevent premature 

convergence. Mutation is a genetic operator used to maintain genetic diversity of the 

chromosomes of a population of a genetic or, more generally, an evolutionary algorithm 

(EA). It is analogous to biological mutation. 

The classic example of a mutation operator of a binary coded genetic algorithm (GA) 

involves a probability that an arbitrary bit in a genetic sequence will be flipped from its 

original state. A common method of implementing the mutation operator involves 

generating a random variable for each bit in a sequence. This random variable tells 

whether or not a particular bit will be flipped. This mutation procedure, based on the 

biological point mutation, is called single point mutation. Other types of mutation 
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operators are commonly used for representations other than binary, 

such as floating-point encodings or representations for combinatorial problems. 

The purpose of mutation in EAs is to introduce diversity into the sampled population. 

Mutation operators are used in an attempt to avoid local minima by preventing the 

population of chromosomes from becoming too similar to each other, thus slowing or even 

stopping convergence to the global optimum. This reasoning also leads most EAs to 

avoid only taking the fittest of the population in generating the next generation, but rather 

selecting a random (or semi-random) set with a weighting toward those that are fitter. 

The following requirements apply to all mutation operators used in an EA: 

• Every point in the search space must be reachable by one or more 

mutations. 

• There must be no preference for parts or directions in the search space (no drift). 

• Small mutations should be more probable than large ones. 

• For different genome types, different mutation types are suitable. 

o Bit string mutation 
 

The mutation of bit strings ensues through bit flips at random positions. 
 

Example:  

 
1 0 1 0 

↓ 

0 1 0 

 1 0 1 0 1 1 0 
 

The probability of a mutation of a bit is 1/L, where L is the length of the binary vector. Thus, 

a mutation rate of 1 per mutation and individual selected for mutation is reached. [6] 

2.2.6 Termination 

The algorithm terminates if the population has converged (does not produce offspring 

which are significantly different from the previous generation). Then it is said that the 

genetic algorithm has provided a set of solutions to the problem[7]. 
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Algorithms 

The methods and 
algorithms. 

Console 

The main app, the 
data used as an 
input, the output 
in two formats, 
HTML and JSON. 

Models 

The models used 
in the project. 

 This generational process is repeated until a termination condition has been reached. 

Common terminating conditions are: 

• A solution is found that satisfies minimum criteria. 

• Fixed number of generations reached. 

• Allocated budget reached (computation time/money). 

• The highest-ranking solution's fitness is reaching or has reached a plateau such 

that successive iterations no longer produce better results. 

• Manual inspection. 

• Combinations of the above[7].  

3. Project Architecture and Implementation 

An application has been developed using C# programming language to accept parameters 

related to the classes and restrictions then use one of the genetic algorithms to provide a 

schedule of the classes with the optimal solution where the less conflicts happen. 

3.1 Application Architecture 

The application is a one solution project that contain three components, the genetic 

algorithms component, the models component and the main console application 

component, as shown in table (1). 

Table (1) Application Components. 
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3.1.1 Models’ component 

This component has the models that represents the entities used in the application and 

global variables: 

• Course: Pertains to course-related details. 

• Professor: Pertains to professor-related details and methods. 

• Room: Pertains to classroom-related details. 

• Students-Group: Pertains to student group-related details. 

• Chromosome: A set of parameters which define a proposed solution of the 

problem that the genetic algorithm aims to solve. 

• Schedule: Initializes chromosomes with configuration block. 

• Criteria: Checks constraints such as "Is there an overlap?" or "Are there enough 

seats?". 

• Reservation: Manages Time, Day, and Room reservation. 

• Configuration: Contains methods to configure the timetable such as getters, 

calculations, and parsing files. 

• Constant: Holds global variables used in the system, such as the number of days 

in a week and hours available in the schedule. 

• CourseClass: Represents the relationship between a course and a classroom. 

3.1.2 Genetic Algorithms component 
• NSGA-II: A fast and elitist multi-objectives genetic algorithm[8]. 
• NSGA-III: An Evolutionary Many-Objective Optimization Algorithm Using 

Reference Point-Based Nondominated Sorting Approach[9]. 
• APNSGA-III: Adaptive Population NSGA-III with Dual Control Strategy[10]. 
• AMGA2: Archive-based Micro Genetic Algorithm[11].  
• EMoSOA: Evolutionary multi-objective seagull optimization algorithm[12]. 
• BGA: Genetic algorithm with a new biological operator[13]. 
• Hgasoo: Hybrid Genetic Algorithm and Sperm Swarm Optimization[14]. 
• Ngra: Non-dominated Ranking Genetic Algorithm[15]. 

 
3.1.3 App component 
The app component contains 3 main parts: 

• Data: A JSON file that seeds the data of the entities such as Professors, Courses, 
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Classes, etc.. 
• Output Files: Files with different formats to represent the output, such as in HTML 

and JSON format. 
• Console App: The main program app that initiate the process, call the 

methods, and represent the output using the output files. 

3.2 Application implementation 

The number of working days is set to 5 days a week, with 8 working hours per day. Five 
constraints are applied: 

• no classroom overlapping (R). 

•  sufficient seats for students in each class (S). 

•  adequate equipment for classes if needed (L). 

•  no scheduling conflicts for professors (P). 

•  and no overlapping between student groups (G). 

After the global variables are declared, the constraints are set, and the data is filled, the 
console app is run. the following steps will demonstrate what happens logically in the 
code: 

1. Start a stopwatch to count the time taken in the process. 

2. Configure the configuration file using the data filled in the data file. 

3. Create a schedule using the configuration file. 

4. Call the desired Genetic Algorithm file and pass the schedule parameter to it. 

5. Get the results from the algorithm function and represent it with the desired output 

file format. 

6. Display notes and other parameters on the console terminal, such as how many 

generations it takes to reach the optimal solution, and how much time. 
 

3.3 APNsgaIII vs Emosoa 

Two methods of the genetic algorithms have been taken to the comparison, Adaptive 

Population NSGA-III with Dual Control Strategy (APNsga-III) and Evolutionary multi-

objective seagull optimization algorithm (EMoSOA) with maximum iteration of 1000 

generation and minimum fitness of 99.9% to stop the search, whichever reached first. 
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• APNsgaIII 

The results of implementing this method as seen in Figure (8) 

Figure (8) APNsgaIII Console Results. 

The best fitness reached was 98.1481%, the search stopped after reaching the 
maximum iteration of 1000 generation while it took 14.741 seconds to reach the 
result in Table (2). 

The result shows that there is two constrains have not been achieved in two classes in 
the schedule, once with not enough student seats (S) and one with conflict in the 
room (R). 

Table (2) APNsgaIII HTML Output Results 

• Emosoa 

The results of implementing this method as seen in Figure (9). 
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Figure (9) Emosoa Console Results. 

 

The best fitness reached was 98.8889%, the search stopped after reaching the 
maximum iteration of 1000 generation while it took 9.747 seconds to reach the result 
in Table (3). 

The result shows that there is two constrains have not been achieved in two classes in 
the schedule, once with not enough student seats (S) and one with not enough 
equipment in the lap (L). 

Table (3) Emosoa HTML Output Results. 

 

The results of our comparison shows the advantage of using the Emosoa method 
over the APNsgaIII method when it comes to the fitness level and time 
consumption. 
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Conclusion 

The conclusions drawn from this paper can be summarized as follows: 

• Genetic Algorithm Overview: The genetic algorithm is an optimization technique for 

solving both constrained and unconstrained problems, inspired by the principles of 

natural selection in biological evolution. This algorithm iteratively modifies a population 

of individual solutions. 

• Population Dynamics: The population size remains constant. As new generations are 

created, individuals with the lowest fitness are eliminated, making room for new 

offspring.  

• Generational Improvement: Through a repeated sequence of phases, each new generation 

produces individuals that are generally better than those in the previous generation.  

• The fitness function must effectively measure the quality of a given solution. 

Specifically, it should be capable of evaluating the generated solutions and providing 

clear guidance on how to improve them. 

For instance, a fitness function that assigns a zero value unless the solution is correct is 

suboptimal, as it fails to provide incremental feedback on the proximity of a solution to the 

optimal answer. Similarly, a fitness function that increases with improving solutions but 

does not distinctly identify the optimal solution is also inadequate, as it may cause the 

population to converge prematurely and stagnate without reaching the optimal solution. 
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