
Volume 12 Issue 01
June 2024

ISSN 2958-6119

LJAST
Libyan Journal of Applied
Science and Technology
 مجلة لیبیا للعلوم التطبیقیة والتقنیة

 Copyright © LJAST حقوق الطبع محفوظة
جلة لیبیا للعلوم التطبیقیة والتقنیةمل

56

Classes Scheduler sing Genetic Algorithm
Murad AlBarki1, Ahmed Alardawi2, Abobakr Aboshgifa3, Nabil Belhaj4

1,2 The College of Computer Technology Tripoli,Libya
Ahmed.Alardawi@cctt.edu.ly

3,4 Research Department ,The Libyan higher technical center for training and production،
Tripoli, Libya

Received 28 May 2024; revised 30 May 2024; accepted 01 June 2024

Abstract

 In the ever-evolving of software development, the surge in artificial intelligence (AI) and deep
learning technologies has been nothing short of astonishing. As the world bears witness to this
transformative era, staying abreast of cutting-edge problem-solving methodologies becomes
paramount. To master these techniques, practical experimentation is essential. Among these
techniques, the genetic algorithm stands as a venerable tool for addressing complex problems. Its
longevity in the field attests to its efficacy.

Genetic algorithms find their niche in scenarios that demand iterative sorting under diverse and
multifaceted conditions. Whether optimizing schedules, streamlining resource allocation, or
enhancing decision-making processes, these algorithms offer a powerful framework. Their
versatility extends across various domains, making them excellent tools for modern problem
solvers.

 The study of genetic algorithms involves practical validation. By subjecting them to rigorous
testing and empirical study, to uncover their limits, capabilities, and potential applications. As
delve deeper into this field, novel solutions will be unlocked and pave the way for further
advancements.

The primary focus of this research paper is to demonstrate genetic algorithm principles,
specifically in the context of optimizing timetable schedules through the use of Evolutionary
Algorithms (EAs). The study proceeds by presenting a developed (.NET) application that
employs the prescribed methodology of numerous genetic algorithms to seek the most optimal
solution for scheduling college classes, subject to multiple constraints. Subsequently, a
comparative analysis of the results obtained from two selected algorithms is conducted.

Keywords : Evolutionary Algorithm, Genetic Algorithms, Timetable Schedules ,Scheduling Model.

1. Introduction
 In the recent years, metaheuristic algorithms are used to solve real-life complex
problems arising from different fields such as economics, engineering, politics,
management, and engineering. Intensification and diversification are the key elements of
metaheuristic algorithm. The proper balance between these elements is required to solve
the real-life problem in an effective manner. Most of metaheuristic algorithms are
inspired from biological evolution process, swarm behavior, and physics’ law. As is
known from experience, the manually designing and preparation of time schedules that
are best suited to the purposes for which they were prepared is a difficult process that
takes a huge amount of time and energy. Worse still, the process has to be recalculated

mailto:Ahmed.Alardawi@cctt.edu.ly

Volume 12 Issue 01
June 2024

ISSN 2958-6119

LJAST
Libyan Journal of Applied
Science and Technology
 مجلة لیبیا للعلوم التطبیقیة والتقنیة

 Copyright © LJAST حقوق الطبع محفوظة
جلة لیبیا للعلوم التطبیقیة والتقنیةمل

57

for each input individually each time the parameters change.
Fortunately, artificial intelligence (AI) can streamline this process, automating the heavy
lifting and providing efficient solutions, and Genetic Algorithm is one of the most
commonly used method in the meantime.
The Genetic Algorithm (GA) is a search-based optimization technique rooted in
principles inspired by genetics and natural selection. GAs are commonly used to
discover optimal or nearly optimal solutions for challenging problems that would
otherwise require an extensive amount of time to solve manually. Their applications span
various domains, including optimization problems, scientific research, and machine
learning[1].
The objectives of this paper are:

• Demonstrate genetic algorithm principles.

• Design and develop an app to use multiple genetic algorithm approaches to
schedule classes of an education institution with different constrains.

• Implement the web app and compare the results between two chosen methods.

2. Genetic Algorithms

In computer science and operations research, a genetic algorithm (GA) is a metaheuristic
inspired by the process of natural selection that belongs to the larger class of evolutionary
algorithms (EA).

A genetic algorithm is a search heuristic that is inspired by Charles Darwin’s theory of
natural evolution. This algorithm reflects the process of natural selection where the fittest
individuals are selected for reproduction in order to produce offspring of the next
generation.

The (GA) is a method for solving both constrained and unconstrained optimization
problems that is based on natural selection, the process that drives biological evolution.
The method repeatedly modifies a population of individual solutions[2].

2.1 Notion of Natural Selection
The process of natural selection starts with the selection of the fittest individuals from a
population. They produce offspring which inherit the characteristics of the parents and
will be added to the next generation. If parents have better fitness, their offspring will be
better than parents and have a better chance at surviving. This process keeps on iterating
and at the end, a generation with the fittest individuals will be found.
This notion can be applied for a search problem. A set of solutions for problem is
considered and selected the set of best ones out of them[1].

2.2 Phases of Genetic Algorithm
There are six phases considered in a genetic algorithm:

Volume 12 Issue 01
June 2024

ISSN 2958-6119

LJAST
Libyan Journal of Applied
Science and Technology
 مجلة لیبیا للعلوم التطبیقیة والتقنیة

 Copyright © LJAST حقوق الطبع محفوظة
جلة لیبیا للعلوم التطبیقیة والتقنیةمل

58

• Initial population

• Fitness function

• Selection

• Crossover

• Mutation

• Termination

2.2.1 Initial Population

The process is initiated with a set of individuals which is called a Population. Each
individual is a solution to the problem needs to be solved, those individuals may or may
not include the optimal values.

An individual is characterized by a set of parameters (variables) known as Genes. Genes
are joined into a string to form a Chromosome (solution).

In genetic algorithm, the set of genes of an individual is represented using a string, in
terms of an alphabet. Usually, binary values are used (string of 1s and 0s). This process is
referred to as encoding the genes in a chromosome. Figure (1) shows an example of
Population, Chromosomes and Genes.

Figure (1) Population, Chromosomes and Genes.

The population size depends on the nature of the problem, but typically contains several

hundreds or thousands of possible solutions. Often, the initial population is generated

randomly, allowing the entire range of possible solutions (the search space).

Occasionally, the solutions may be "seeded" in areas where optimal solutions are likely to

be found[2].

2.2.2 Fitness Function
Fitness Function (also known as the Evaluation Function) evaluates how close a given

solution is to the optimum solution of the desired problem. It determines the ability of an

individual to compete with other individuals. It gives a fitness score to each individual.

Volume 12 Issue 01
June 2024

ISSN 2958-6119

LJAST
Libyan Journal of Applied
Science and Technology
 مجلة لیبیا للعلوم التطبیقیة والتقنیة

 Copyright © LJAST حقوق الطبع محفوظة
جلة لیبیا للعلوم التطبیقیة والتقنیةمل

59

The probability that an individual will be selected for reproduction is

based on its fitness score.

There are generic requirements should be satisfied by any fitness function:

• Clearly defined.
• Efficiently implemented.
• Quantitatively measured .

• Generate intuitive results.
Each problem has its own fitness function. However, certain functions have been adopted

by data scientists regarding certain types of problems. Coming up with a fitness function

is the hardest part when it comes to formulating a problem using genetic algorithms.

Typically, for classification tasks where supervised learning is used, error measures such

as Euclidean distance and Manhattan distance have been widely used as the fitness

function.

For optimization problems, basic functions such as sum of a set of calculated parameters

related to the problem domain can be used as the fitness function. A very famous

scenario where genetic algorithms can be used is the process of making timetables or

timetable scheduling.

Consider a weekly timetable being created for a particular batch of college classes.

Classes must be arranged, and a timetable developed, to ensure no clashes occur. The

task, therefore, is to search for the optimum timetable schedule.

Since no collisions among classes should occur, minimizing the number of students with

class conflicts is essential. The fitness function can be formulated as the inverse of the

number of students with class conflicts. The fewer the students with class conflicts, the

more fit the class schedule is[3].

2.2.3 Selection

The idea of selection phase is to select the fittest individuals and let them pass their

genes to the next generation.

Volume 12 Issue 01
June 2024

ISSN 2958-6119

LJAST
Libyan Journal of Applied
Science and Technology
 مجلة لیبیا للعلوم التطبیقیة والتقنیة

 Copyright © LJAST حقوق الطبع محفوظة
جلة لیبیا للعلوم التطبیقیة والتقنیةمل

60

Two pairs of individuals (parents) are selected based on their

fitness scores, individuals with high fitness have more chance to be selected for

reproduction.

During each successive generation, a portion of the existing population is selected to

reproduce for a new generation. Individual solutions are selected through a fitness-based

process, where fitter solutions (as measured by a fitness function) are typically more

likely to be selected. Certain selection methods rate the fitness of each solution and

preferentially select the best solutions. Other methods rate only a random sample of the

population, as the former process may be very time-consuming.

The fitness function is defined over the genetic representation and measures the quality of

the represented solution. The fitness function is always problem dependent. For instance,

in the knapsack problem one wants to maximize the total value of objects that can be put

in a knapsack of some fixed capacity. A representation of a solution might be an array of

bits, where each bit represents a different object, and the value of the bit (0 or 1)

represents whether or not the object is in the knapsack. Not every such representation is

valid, as the size of objects may exceed the capacity of the knapsack. The fitness of the

solution is the sum of values of all objects in the knapsack if the representation is valid,

or 0 otherwise.

In some problems, it is hard or even impossible to define the fitness expression; in these

cases, a simulation may be used to determine the fitness function value of a phenotype

(e.g., computational fluid dynamics is used to determine the air resistance of a vehicle

whose shape is encoded as the phenotype), or even interactive genetic algorithms are

used[4].

2.2.4 Crossover
Also called recombination, is a genetic operator used to combine the genetic information

of two parents to generate new offspring. It is one way to stochastically generate new

solutions from an existing population and is analogous to the crossover that happens

during sexual reproduction in biology. Solutions can also be generated by cloning an

Volume 12 Issue 01
June 2024

ISSN 2958-6119

LJAST
Libyan Journal of Applied
Science and Technology
 مجلة لیبیا للعلوم التطبیقیة والتقنیة

 Copyright © LJAST حقوق الطبع محفوظة
جلة لیبیا للعلوم التطبیقیة والتقنیةمل

61

existing solution, which is analogous to asexual reproduction.

Newly generated solutions are typically mutated before being added to the population.

Different algorithms in evolutionary computation may use different data structures to

store genetic information, and each genetic representation can be recombined with

different crossover operators. Typical data structures that can be recombined with

crossover are bit arrays, vectors of real numbers, or trees.

Crossover is the most significant phase in a genetic algorithm. For each pair of parents to

be mated, a crossover point is chosen at random from within the genes. For example,

consider the crossover point to be 3 as shown in Figure (2).

Figure (2) Crossover point.

Offspring are created by exchanging the genes of parents among themselves until the

crossover point is reached. Figure (3) shows the process of exchanging genes among

parents.

Figure (3) Exchanging genes among parents.

The new offspring are added to the population as seen in Figure (4).

Volume 12 Issue 01
June 2024

ISSN 2958-6119

LJAST
Libyan Journal of Applied
Science and Technology
 مجلة لیبیا للعلوم التطبیقیة والتقنیة

 Copyright © LJAST حقوق الطبع محفوظة
جلة لیبیا للعلوم التطبیقیة والتقنیةمل

62

Figure (4) New offspring.

Traditional genetic algorithms store genetic information in a chromosome represented by
a bit array. Crossover methods for bit arrays are popular and an illustrative example of
genetic recombination.

• One-point crossover
A point on both parents' chromosomes is picked randomly and designated a 'crossover

point'. Bits to the right of that point are swapped between the two parent chromosomes.

This results in two offspring, each carrying some genetic information from both parents.

See Figure (5)

Figure (5) One Point Crossover.

• Two-point and k-point crossover
In two-point crossover, two crossover points are picked randomly from the parent

chromosomes. The bits in between the two points are swapped between the parent’s

organisms.

Two-point crossover is equivalent to performing two single-point crossovers with

different crossover points. This strategy can be generalized to k-point crossover for any

positive integer k, picking k crossover points. See Figure (6).

Figure (6) Two Points Crossover.

Volume 12 Issue 01
June 2024

ISSN 2958-6119

LJAST
Libyan Journal of Applied
Science and Technology
 مجلة لیبیا للعلوم التطبیقیة والتقنیة

 Copyright © LJAST حقوق الطبع محفوظة
جلة لیبیا للعلوم التطبیقیة والتقنیةمل

63

• Uniform crossover
In uniform crossover, typically, each bit is chosen from either parent with equal

probability.[6] Other mixing ratios are sometimes used, resulting in offspring which

inherit more genetic information from one parent than the other. In a uniform crossover,

we don’t divide the chromosome into segments, rather we treat each gene separately. In

this, we essentially flip a coin for each chromosome to decide whether or not it’ll be

included in the off-spring. It’s also possible to bias the coin to one parent, to have more

genetic material in the child from that parent[5].

2.2.5 Mutation
In certain new offspring formed, some of their genes can be subjected to a

mutation with a low random probability. This implies that some of the bits in the bit

string can be flipped. See Figure (7).

Figure (7) Mutation: Before and After.

Mutation occurs to maintain diversity within the population and prevent premature

convergence. Mutation is a genetic operator used to maintain genetic diversity of the

chromosomes of a population of a genetic or, more generally, an evolutionary algorithm

(EA). It is analogous to biological mutation.

The classic example of a mutation operator of a binary coded genetic algorithm (GA)

involves a probability that an arbitrary bit in a genetic sequence will be flipped from its

original state. A common method of implementing the mutation operator involves

generating a random variable for each bit in a sequence. This random variable tells

whether or not a particular bit will be flipped. This mutation procedure, based on the

biological point mutation, is called single point mutation. Other types of mutation

Volume 12 Issue 01
June 2024

ISSN 2958-6119

LJAST
Libyan Journal of Applied
Science and Technology
 مجلة لیبیا للعلوم التطبیقیة والتقنیة

 Copyright © LJAST حقوق الطبع محفوظة
جلة لیبیا للعلوم التطبیقیة والتقنیةمل

64

operators are commonly used for representations other than binary,

such as floating-point encodings or representations for combinatorial problems.

The purpose of mutation in EAs is to introduce diversity into the sampled population.

Mutation operators are used in an attempt to avoid local minima by preventing the

population of chromosomes from becoming too similar to each other, thus slowing or even

stopping convergence to the global optimum. This reasoning also leads most EAs to

avoid only taking the fittest of the population in generating the next generation, but rather

selecting a random (or semi-random) set with a weighting toward those that are fitter.

The following requirements apply to all mutation operators used in an EA:

• Every point in the search space must be reachable by one or more

mutations.

• There must be no preference for parts or directions in the search space (no drift).

• Small mutations should be more probable than large ones.

• For different genome types, different mutation types are suitable.

o Bit string mutation

The mutation of bit strings ensues through bit flips at random positions.

Example:

1 0 1 0

↓

0 1 0

 1 0 1 0 1 1 0

The probability of a mutation of a bit is 1/L, where L is the length of the binary vector. Thus,

a mutation rate of 1 per mutation and individual selected for mutation is reached. [6]

2.2.6 Termination

The algorithm terminates if the population has converged (does not produce offspring

which are significantly different from the previous generation). Then it is said that the

genetic algorithm has provided a set of solutions to the problem[7].

Volume 12 Issue 01
June 2024

ISSN 2958-6119

LJAST
Libyan Journal of Applied
Science and Technology
 مجلة لیبیا للعلوم التطبیقیة والتقنیة

 Copyright © LJAST حقوق الطبع محفوظة
جلة لیبیا للعلوم التطبیقیة والتقنیةمل

65

Algorithms

The methods and
algorithms.

Console

The main app, the
data used as an
input, the output
in two formats,
HTML and JSON.

Models

The models used
in the project.

 This generational process is repeated until a termination condition has been reached.

Common terminating conditions are:

• A solution is found that satisfies minimum criteria.

• Fixed number of generations reached.

• Allocated budget reached (computation time/money).

• The highest-ranking solution's fitness is reaching or has reached a plateau such

that successive iterations no longer produce better results.

• Manual inspection.

• Combinations of the above[7].

3. Project Architecture and Implementation

An application has been developed using C# programming language to accept parameters

related to the classes and restrictions then use one of the genetic algorithms to provide a

schedule of the classes with the optimal solution where the less conflicts happen.

3.1 Application Architecture

The application is a one solution project that contain three components, the genetic

algorithms component, the models component and the main console application

component, as shown in table (1).

Table (1) Application Components.

Volume 12 Issue 01
June 2024

ISSN 2958-6119

LJAST
Libyan Journal of Applied
Science and Technology
 مجلة لیبیا للعلوم التطبیقیة والتقنیة

 Copyright © LJAST حقوق الطبع محفوظة
جلة لیبیا للعلوم التطبیقیة والتقنیةمل

66

3.1.1 Models’ component

This component has the models that represents the entities used in the application and

global variables:

• Course: Pertains to course-related details.

• Professor: Pertains to professor-related details and methods.

• Room: Pertains to classroom-related details.

• Students-Group: Pertains to student group-related details.

• Chromosome: A set of parameters which define a proposed solution of the

problem that the genetic algorithm aims to solve.

• Schedule: Initializes chromosomes with configuration block.

• Criteria: Checks constraints such as "Is there an overlap?" or "Are there enough

seats?".

• Reservation: Manages Time, Day, and Room reservation.

• Configuration: Contains methods to configure the timetable such as getters,

calculations, and parsing files.

• Constant: Holds global variables used in the system, such as the number of days

in a week and hours available in the schedule.

• CourseClass: Represents the relationship between a course and a classroom.

3.1.2 Genetic Algorithms component
• NSGA-II: A fast and elitist multi-objectives genetic algorithm[8].
• NSGA-III: An Evolutionary Many-Objective Optimization Algorithm Using

Reference Point-Based Nondominated Sorting Approach[9].
• APNSGA-III: Adaptive Population NSGA-III with Dual Control Strategy[10].
• AMGA2: Archive-based Micro Genetic Algorithm[11].
• EMoSOA: Evolutionary multi-objective seagull optimization algorithm[12].
• BGA: Genetic algorithm with a new biological operator[13].
• Hgasoo: Hybrid Genetic Algorithm and Sperm Swarm Optimization[14].
• Ngra: Non-dominated Ranking Genetic Algorithm[15].

3.1.3 App component
The app component contains 3 main parts:

• Data: A JSON file that seeds the data of the entities such as Professors, Courses,

Volume 12 Issue 01
June 2024

ISSN 2958-6119

LJAST
Libyan Journal of Applied
Science and Technology
 مجلة لیبیا للعلوم التطبیقیة والتقنیة

 Copyright © LJAST حقوق الطبع محفوظة
جلة لیبیا للعلوم التطبیقیة والتقنیةمل

67

Classes, etc..
• Output Files: Files with different formats to represent the output, such as in HTML

and JSON format.
• Console App: The main program app that initiate the process, call the

methods, and represent the output using the output files.

3.2 Application implementation

The number of working days is set to 5 days a week, with 8 working hours per day. Five
constraints are applied:

• no classroom overlapping (R).

• sufficient seats for students in each class (S).

• adequate equipment for classes if needed (L).

• no scheduling conflicts for professors (P).

• and no overlapping between student groups (G).

After the global variables are declared, the constraints are set, and the data is filled, the
console app is run. the following steps will demonstrate what happens logically in the
code:

1. Start a stopwatch to count the time taken in the process.

2. Configure the configuration file using the data filled in the data file.

3. Create a schedule using the configuration file.

4. Call the desired Genetic Algorithm file and pass the schedule parameter to it.

5. Get the results from the algorithm function and represent it with the desired output

file format.

6. Display notes and other parameters on the console terminal, such as how many

generations it takes to reach the optimal solution, and how much time.

3.3 APNsgaIII vs Emosoa

Two methods of the genetic algorithms have been taken to the comparison, Adaptive

Population NSGA-III with Dual Control Strategy (APNsga-III) and Evolutionary multi-

objective seagull optimization algorithm (EMoSOA) with maximum iteration of 1000

generation and minimum fitness of 99.9% to stop the search, whichever reached first.

Volume 12 Issue 01
June 2024

ISSN 2958-6119

LJAST
Libyan Journal of Applied
Science and Technology
 مجلة لیبیا للعلوم التطبیقیة والتقنیة

 Copyright © LJAST حقوق الطبع محفوظة
جلة لیبیا للعلوم التطبیقیة والتقنیةمل

68

• APNsgaIII

The results of implementing this method as seen in Figure (8)

Figure (8) APNsgaIII Console Results.

The best fitness reached was 98.1481%, the search stopped after reaching the
maximum iteration of 1000 generation while it took 14.741 seconds to reach the
result in Table (2).

The result shows that there is two constrains have not been achieved in two classes in
the schedule, once with not enough student seats (S) and one with conflict in the
room (R).

Table (2) APNsgaIII HTML Output Results

• Emosoa

The results of implementing this method as seen in Figure (9).

Volume 12 Issue 01
June 2024

ISSN 2958-6119

LJAST
Libyan Journal of Applied
Science and Technology
 مجلة لیبیا للعلوم التطبیقیة والتقنیة

 Copyright © LJAST حقوق الطبع محفوظة
جلة لیبیا للعلوم التطبیقیة والتقنیةمل

69

Figure (9) Emosoa Console Results.

The best fitness reached was 98.8889%, the search stopped after reaching the
maximum iteration of 1000 generation while it took 9.747 seconds to reach the result
in Table (3).

The result shows that there is two constrains have not been achieved in two classes in
the schedule, once with not enough student seats (S) and one with not enough
equipment in the lap (L).

Table (3) Emosoa HTML Output Results.

The results of our comparison shows the advantage of using the Emosoa method
over the APNsgaIII method when it comes to the fitness level and time
consumption.

Volume 12 Issue 01
June 2024

ISSN 2958-6119

LJAST
Libyan Journal of Applied
Science and Technology
 مجلة لیبیا للعلوم التطبیقیة والتقنیة

 Copyright © LJAST حقوق الطبع محفوظة
جلة لیبیا للعلوم التطبیقیة والتقنیةمل

70

Conclusion

The conclusions drawn from this paper can be summarized as follows:

• Genetic Algorithm Overview: The genetic algorithm is an optimization technique for

solving both constrained and unconstrained problems, inspired by the principles of

natural selection in biological evolution. This algorithm iteratively modifies a population

of individual solutions.

• Population Dynamics: The population size remains constant. As new generations are

created, individuals with the lowest fitness are eliminated, making room for new

offspring.

• Generational Improvement: Through a repeated sequence of phases, each new generation

produces individuals that are generally better than those in the previous generation.

• The fitness function must effectively measure the quality of a given solution.

Specifically, it should be capable of evaluating the generated solutions and providing

clear guidance on how to improve them.

For instance, a fitness function that assigns a zero value unless the solution is correct is

suboptimal, as it fails to provide incremental feedback on the proximity of a solution to the

optimal answer. Similarly, a fitness function that increases with improving solutions but

does not distinctly identify the optimal solution is also inadequate, as it may cause the

population to converge prematurely and stagnate without reaching the optimal solution.

References
[1] “Introduction to Genetic Algorithms — Including Example Code | by Vijini Mallawaarachchi |

Towards Data Science.” Accessed: May 26, 2024. [Online]. Available:
https://towardsdatascience.com/introduction-to-genetic-algorithms-including-example-code-
e396e98d8bf3

[2] “Genetic algorithm - Wikipedia.” Accessed: May 26, 2024. [Online]. Available:
https://en.wikipedia.org/wiki/Genetic_algorithm

[3] “How to define a Fitness Function in a Genetic Algorithm? | by Vijini Mallawaarachchi |
Towards Data Science.” Accessed: May 26, 2024. [Online]. Available:
https://towardsdatascience.com/how-to-define-a-fitness-function-in-a-genetic-algorithm-
be572b9ea3b4

[4] “Genetic Algorithm.” Accessed: Mar. 06, 2023. [Online]. Available: https://www.unzmarkt-
frauenburg.at/blog/genetic-algorithm.php

[5] “Crossover in Genetic Algorithm - GeeksforGeeks.” Accessed: May 26, 2024. [Online].

Volume 12 Issue 01
June 2024

ISSN 2958-6119

LJAST
Libyan Journal of Applied
Science and Technology
 مجلة لیبیا للعلوم التطبیقیة والتقنیة

 Copyright © LJAST حقوق الطبع محفوظة
 لمجلة لیبیا للعلوم التطبیقیة والتقنیة

71

Available: https://www.geeksforgeeks.org/crossover-in-genetic-algorithm/
[6] J. Carr, “An introduction to genetic algorithms,” Sr. Proj., vol. 1, no. 40, p. 7, 2014.
[7] W. H. Hsu, “Genetic algorithms,” Dep. Comput. Inf. Sci. Kansas State Univ., vol. 234, pp.

62302–66506, 2004.
[8] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic

algorithm: NSGA-II,” IEEE Trans. Evol. Comput., vol. 6, no. 2, pp. 182–197, 2002.
[9] K. Deb and H. Jain, “An evolutionary many-objective optimization algorithm using reference-

point-based nondominated sorting approach, part I: solving problems with box constraints,”
IEEE Trans. Evol. Comput., vol. 18, no. 4, pp. 577–601, 2013.

[10] M. Wu et al., “Adaptive population nsga-iii with dual control strategy for flexible job shop
scheduling problem with the consideration of energy consumption and weight,” Machines, vol.
9, no. 12, p. 344, 2021.

[11] S. Tiwari, G. Fadel, and K. Deb, “AMGA2: improving the performance of the archive-based
micro-genetic algorithm for multi-objective optimization,” Eng. Optim., vol. 43, no. 4, pp.
377–401, 2011.

[12] G. Dhiman, K. Singh, A. Slowik, V. Chang, A. Yildiz, and A. Kaur, “EMoSOA: A New
Evolutionary Multi-objective Seagull Optimization Algorithm for Global Optimization,” Int. J.
Mach. Learn. Cybern., vol. 12, Feb. 2021, doi: 10.1007/s13042-020-01189-1.

[13] R. Lakshmi, K. Vivekanandhan, and R. Brintha, “A New Biological Operator in Genetic
Algorithm for Class Scheduling Problem,” Int. J. Comput. Appl., vol. 60, pp. 6–11, Dec. 2012,
doi: 10.5120/9742-4293.

[14] H. Shehadeh, H. Mustafa, and M. Tubishat, “A Hybrid Genetic Algorithm and Sperm Swarm
Optimization (HGASSO) for Multimodal Functions,” Int. J. Appl. Metaheuristic Comput., vol.
13, Jan. 2022, doi: 10.4018/IJAMC.292507.

[15] O. Al Jadaan, L. Rajamani, and C. R. Rao, “NON-DOMINATED RANKED GENETIC
ALGORITHM FOR SOLVING MULTI-OBJECTIVE OPTIMIZATION PROBLEMS:
NRGA.,” J. Theor. Appl. Inf. Technol., vol. 4, no. 1, 2008.

	1. Introduction
	2. Genetic Algorithms
	2.1 Notion of Natural Selection
	2.2 Phases of Genetic Algorithm
	2.2.1 Initial Population
	2.2.2 Fitness Function
	2.2.3 Selection
	2.2.4 Crossover
	 One-point crossover
	 Two-point and k-point crossover
	 Uniform crossover

	2.2.5 Mutation
	o Bit string mutation

	2.2.6 Termination
	3. Project Architecture and Implementation
	3.1 Application Architecture
	3.1.1 Models’ component
	3.1.2 Genetic Algorithms component
	3.1.3 App component
	3.2 Application implementation
	3.3 APNsgaIII vs Emosoa
	 APNsgaIII
	 Emosoa
	References

